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R (8,)) = {(al, ~3): max (1 J‘I- C!I 1; j ~‘3 -- 6 1) < eo; (dl,d3) E 1 (~J~s,os, [Ej)} 

k'(e.,) = R (SO) f-j Prxl,,! j El. V (c:4 = I’rrlnrs lEl’\li ie~f 

Taking the definition of the norm 11 s /I 7. niax,, . . . . $1 si 1 into account, we find from 
the previous constructions, that we can take as (I any open bounded connected set in 
R,:” such that PI‘,, ,,,, y,It:I = I: (t’tr) 

Naturally c is nonempty because Ed satisfies the conditions (3,4), Thus all conditions 
of Theorem 1 hold, Consequently, no matter how small the positive number E,, and what 

continuously differentiable functions zil (I) and ull (1) are chosen, no Liapunov-stable 
motion of (3.1) exists belonging, at all t _& u , to the set G constructed, 

The author thanks V, V, Rumiantsev for valuable advice, 
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Galkin in his papers [l, 21 obtained a class of exact solutions of the system of 
kinetic moments for a monatomic Maxwell-type gas. The simplest flows descri- 
bed by these solutions, namely the shear and divergent flows, were used to analyze 
the domain of appli~billty of the Cllapman-Enskog method [l, 3, 41, The pre- 
sent paper deals with certain other flows belonging to this class. The solutions 

obtained are used to investigate the domain of applicability of the Navier-Stokes 
and Barnett approximations to the Chapman-Enskog method. 

2. Let us consider a one-dimensional flow for which the macroscopic velocity com- 
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ponents uX, uU and uz depend on the coordinates z, y, z and time t in the following 
manner (c is a constant ): 

UX = s/(t + c) + Yl(t + c), uu== u*= 0 (1.1) 

Solving the equation of continuity for this flow leads to the following expression for the 
density p: 

P = P (0) / 7, T=l+tlC (1.2) 

where P (0) is the initial value of the density. 
Taking (1.2) into account, we can write the energy equation and the stresses pij (i, 

i = 2, y, z) in the form 

(1.3) 

(~0 = RP (0) I pot R = p I pT, po = p I 2’) 

where P is pressure, T is temperature and 1’ is the coeffcient of viscosity. Solving the 

system (1.3) we can find the values of the components of the stress and pressure tensors. 
In particular, for P and prs we obtain 

P 

P== 
It). 3 + { B+q+ + m-1 (1.4) 

‘T+ = z -h,'G-R-1F exp 
i 

I i_ (2~ - v) 111 7 i 
- -L 21/3 J 

(1.5) 

Here A, By, and C, are constants depending on the initial values of the problem, p (0) 
is the initial pressure, d‘ = 1 / (cY”) - lin and Kn is the Knudsen number. 

Using the Chapman-Enskog method to solve the problem in question, we obtain the 
following results : 

pJp,, : 6 1, I’,,, = 0 0.6) 

in the Euler approximation, 

p,pi, _ r-1 3i? SF, F,,jFl = _ ~/3FZ-bl13+“‘~F 
(1.7) 

in the Navier-Stokes approximation and 

$,ir, , = T-4#.'sF--3' zi F’ 

plop,, = (_ 4,i3F + 30,1eF2) T-‘i#,‘P-“‘iz:F2 0.8) 

in the Barnett approximation. In the above expressions p. represents a certain value of 
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the initial pressure which must be specified when the Chapman-Enskog method is used. 
To make the Chapman-Enskog solution closed, it will be necessary to establish the rela- 
tion connecting p0 and the true initial pressure p (0). 

Comparing the expressions (1.6) -(l. 8) with the exact solutions, we notice the absence 
in the Chapman-Ensskog solution of the terms which appear in the exact solutions within 
the braces. These terms however decrease rapidly if (r,, is the time of the mean free 
path of a molecule) 

In this case the exact solutions assume the form 

]‘/p,r = Id. ]‘,,,//I ([I) I [ - “/SF -1 ‘)“/p ; 0 (P)] 71 (1.10) 

1 FL _5Js + ‘4,‘<,F -~ 33;27 F” -1 (1 (F3) 

A = 1 - “/, b’ (II,?, -I- n,,) + 0 (I;?), lI<j zzz pij (0) / JI (0) 

Thus, according to the condition (1. S),the Chapman-Enskog method can be used outside 
the initial layer the dimension of which is of the order of the mean free path of the mo- 

lecule, and at small values of the Knudsen number. 
It is significant that the structure of the exact solution is different from the structure 

of the solution obtained by the Chapman-Enskog method. The exact solution depends, 
at any instant of time, on the initial parameters of the problem, through the constant A . 

I, 0. .z 0. 4 J. b ff. 8 F 

Fig. 1 

It is only when A -7 1 that the exact solu- 

tion becomes a normal solution in the sense 
of Chapman-Enskog. Figure 1 shows the com- 
parison of the solution (1.10) with the Chap- 
man-Enskog solutions (1.7) and (1.8) for this 
particular case, and the dependence of 2 = 
ln (p / p (0)) i In T on the parameter p is 
shown for a fixed instant of time and denoted 

by 1 for the exact solution, by 2 for the 
Navier-Stokes approximation and by _; for 

the Barnett approximation. The computations 
performed show that the Barnett approxima- 
tion, unlike the Navier-Stokes approximation, 
is in good agreement with the exact solution 

up to the values of the Knudsen number of 

the order of unity. 

Earlier we said that the Chapman-Enskog method of solution requires that the relation 
between p (0) and p. be established. We can do this in the present case. In fact, when 
A = 1 , the initial layer is absent and p. - p (0). On the other hand, in the general case 

and for small A’ we can write the solution for p in the initial layer in the form 

p i p (0) ~~ rl+ -t P (p (o), rIij, t. F) T-l,2-3-1,F (1.11) 

Here JI denotes the rapidly decaying part of the solution (1.4). The second part of the 
solution (1.11) decays rapidly, therefore we can write, in the sense of the condition (1.9). 

the following asymptotic expression : p - p (0) A T’ . Consequently the initial value of 

1) in the Chapman-Enskog method should be given such, that the relation 
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PO = P v-3 I1 - ?I3 (n;, t- II,,) b’ + 0 (P)] 

holds. A similar solution was obtained by Galkin [S] for one-dimensional divergence 
flow by matching internal and external expansions of the exact solution with respect to 

a small parameter F. 
When the initial values are arbitrary and F is small but finite, the solutions obtained 

by using the Chapman-Enskog method are applicable over finite time intervals just as 
in the case of a shear flow [4] and a one-dimensional divergent flow [ 31, for the reason 
that at t - iz; , the approximate values of P and p;,; may differ from the exact values 

by arbitrarily large amounts. It should however be noted that the Barnett approximation 
can be used over the time intervals of much greater length than the Navier-Stokes appro- 
ximation. When E = 0 , the Euler approximation of the Chapman-Enskog method is 
identical with the exact solution. In this case the initial layer is absent and the Chap- 
man-Enskog solution is uniformly valid over the whole time interval extending from 
zero to infinity. 

2. Let us now consider a plane divergent flow 

UX =z/(t+c), z$= y / (t i_ cl, u* = 0, p = p (0) / r* 

The system of equations of kinetic moments for a monatomic Maxwell-type gas reduces 

in the present case to a degenerate hypergeometric equation, and the solutions for p and 

P ij can be written in terms of the degenerate hypergeometric functions [6, 71. 

Solution of the problem in the NavierStokes and Barnett approximations to the Chap- 

man-Enskog method, gives the following corresponding results : 

The asymptotic behavior of theetact solution as t + 00 was studied in [6] where an 
asymptotic approach was used to show that the exact solution is asymptotically stable. 

At the same time the Navier-Stokes approximation (2.1) is found to be asymptotically 
unstable, i. e. although the density in the plane divergent flow decreases with time and 
the external forces are absent, the pressure and stresses increase. This implies that the 
Navier-Stokes approximation cannot be used to describe the flow in question, no matter 
what values the parameter F assumes. On the other hand, the Barnett approximation 
(2.2) yields an asymptotically stable solution. Thus the Barnett approximation is super- 
ior to the Navier-Stokes approximation and gives, generally speaking, a qualitatively 
correct result. 

The same characteristic feature is associated with a flow obtained by superimposing 
the plane divergent and shear flows 

UX = xl r, u,~Y= sc;r2 _:-1// 7, LL* = 0 

In fact, it can be shown that the exact solution describing this flow is asymptotically 
stable. Using now the Chapman-Enskog method to solve the problem in the Navier- 
Stokes approximation we obtain 

p/pa = 7 -‘O/s “xl’ (8/& - “//:Fr-1) 

and p + w as t + ,x. 
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The Barnett approximation, on the other hand, yields 

p,p,, _ r-‘4r-‘, s fi = cxp (QFz - “/:+FT-~ - Ji&“+) 

and the solution is asymptotically stable for any fixed value of /: . 
The author expresses deep gratitude to his supervisor V.V.Struminskii for formulating 

the problem and for valuable comments. 
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Mixed problems for a three-dimensional wedge whose edge is unbounded onboth 
sides are considered. The case of several contact sections between the wedge 
and the stamps is investigated. Theorems for solvability of the integral equations 
are established in a number of cases and the properties of their solutions are stu- 
died. Approximate formulas are obtained for small wedge angles. 

The problem was examined in [1] in the case of one contact section, where 
the method elucidated in [2] was applied. The convolution integral equation 

given on a system of segments was studied in l-31. 
The equation of [1] on a system of segments is considered below according to 

the scheme elucidated in [3]. 

1. On the basis of the Ufliand solution [4] the antisymmetric mixed problem (Prob- 


